Crystal chemistry and defect structure of ekmanite:
new data from transmission electron microscopy
and Mössbauer spectroscopy

EMBAIE A. FERROW*, L. REINE WALLENBERG** and DAN HOLTSTAM***

* Department of Mineralogy & Petrology, Institute of Geology, Lund University,
Sölvegatan 13, S-223 62 Lund, Sweden

** Inorganic Chemistry 2, Center for Chemistry and Chemical Engineering,
Box 124, S-221 00 Lund, Sweden

*** Department of Mineralogy, Research Division, Swedish Museum of Natural History,
Box 50007, S-104 05, Stockholm, Sweden

Abstract: Ekmanite is a member of the 2:1 type modulated layer silicates such as ganophyllite and bannisterite.
Its chemical composition can be represented by \(\text{K(M}_2\text{O)}[\text{Si}_8\text{O}_{26}](\text{OH})_{16} \) \((\text{M} = \text{Fe}^{2+}, \text{Mg}^{2+}, \text{Mn}^{2+}) \) where three
of eight Si-tetrahedra are inverted across the interlayer sharing an apical oxygen with similarly inverted
tetrahedra from the adjacent layers. The arrangement of the regular, D, and inverted, R, tetrahedra has the
configuration 4D2R1D1R4D... along the \(b \)-axis. In local regions of possibly high \(\text{Mg/(Mn+Fe)} \) ratio, this
configuration is interrupted by the absence of inverted tetrahedra. Ekmanite typically contains a multitude of
defects; twinning and both regular and irregular stacking arrangements are the most common ones.

Ekmanite is sensitive to oxidation and an unidentified phase, chemically related to it, is always found
lining its grain boundaries. This texture results in intergrown rods defining polygons where the central parts
do not contain ekmanite. The Mössbauer spectrum consists of \(\text{Fe}^{2+} \) and \(\text{Fe}^{3+} \) absorption doublets with the
\(\text{Fe}^{2+} \) absorption composed of two Gaussian line pairs and the \(\text{Fe}^{3+} \) absorption of a single but broad line
pair.

Key-words: ekmanite, HRTEM, Mössbauer spectroscopy, modulated structure, defects, image processing.

1. Introduction

Ekmanite from the mine Brunnsvjöruvan in Hällefors, Örebro, Sweden, was first described as an
Fe- and Mn-rich hydrous silicate mineral by Igelström (1865). On the basis of optical data and
chemical analysis, ekmanite was considered to be related to the friedelite-pyrosomalite group by
Hamberg (1889). From single-crystal X-ray data,
Nagy (1954) identified ekmanite as a layer silicate, structurally related to stilpnomelane. He suggested that the structure of the orthorhombic subunit, with \(a_0 = 5.54 \), \(b_0 = 9.60 \) and \(c_0 = 12.08 \) Å,
was composed of talc-like layers and interleaved cations. However, the reflections were so heavily
streaked that the structure could not be determined from X-ray diffraction data.

The extraction of phases and amplitudes and the subsequent refinement of the origin from experimental HRTEM images has been exploited by
image processing techniques to determine the structure of both organic and inorganic compounds (De Rosier & Klug, 1968; Wenk et al., 1992; Zou et al., 1993). This technique has also
been used to enhance structural details in minerals (Ferrow & Hovmöller, 1993). Nevertheless, the
technique has previously only been used in studies of periodic features. Using the Fourier
transform filtering methods provided by CRISP, a commercially available system running on PC