Kentbrooksite from the Kangerdlugssuaq intrusion, East Greenland, a new Mn-REE-Nb-F end-member in a series within the eudialyte group: Description and crystal structure

OLE JOHNSEN*, JOEL D. GRICE** and ROBERT A. GAULT**

* Geological Museum, University of Copenhagen, Øster Voldgade 5–7, DK-1350 Copenhagen, Denmark
 e-mail: oj@savik.geomus.ku.dk

** Research Division, Canadian Museum of Nature, Ottawa, Ontario K1P 6P4, Canada

Abstract: Kentbrooksite, ideally (Na,REE)IS(Ca,REE)6Mn3Zr3NbSi2S074F2 · 2H2O, is a new mineral from the Kangerdlugssuaq intrusion, East Greenland. The mineral occurs in alkaline pegmatitic bodies cutting pulaskite rocks and is found as anhedral to subhedral aggregates up to 2 cm. It is transparent, yellow-brown with white streak and vitreous luster. Hardness 5–6, brittle, uneven fracture and no cleavage. It is pyroelectric. The mineral is uniaxial negative, \(\omega = 1.628(2) \) and \(\varepsilon = 1.623(2) \), nonpleochroic. \(D_{\text{meas}} = 3.10(4) \) g/cm\(^3\), \(D_{\text{calc}} = 3.08 \) g/cm\(^3\).

The mineral is trigonal, space group \(R\overline{3}m \), \(a = 14.1686(2) \), \(c = 30.0847(4) \) Å, \(Z = 3 \). The strongest reflections in the X-ray powder pattern are \([d(\AA), \text{Int}, (hkl)]: 2.839, 100, (404); 2.961, 91, (315); 11.385, 43, (101); 7.088, 41, (110); 3.380, 37, (131); 4.295, 34, (205); and 5.682, 30, (202). The empirical formula, based on \(3.77(\text{Zr} + \text{Hf} + \text{Nb} + \text{Ti}) \) pfu, is

\[
\begin{align*}
\text{Na}_{14.93}\text{REE}_{0.44}\text{Y}_{0.42}\text{K}_{0.39}\text{Sr}_{0.15}\text{Li}_{16.24}\text{Ca}_{30}\text{Mn}_{1.78}\text{REE}_{0.62}\text{Na}_{0.33}\text{REE}_{6.00}\text{Mn}_{1.90}\text{Fe}_{0.72}\text{Al}_{0.13}\text{Mg}_{0.05}\text{Si}_{2.80} \\
\text{Nb}_{0.55}\text{Zr}_{0.12}\text{Ti}_{0.10}\text{Y}_{0.77}\text{Si}_{0.60}\text{Zr}_{2.81}\text{Fe}_{0.06}\text{Ti}_{0.13}\text{Zr}_{3}[(\text{Si}_{3}\text{O}_{5})_{2}(\text{Si}_{2}\text{O}_{7})_{2}\text{O}_{2}]\text{Fe}_{1.51}\text{Cl}_{0.27}\text{OH}_{0.22}\text{Si}_{2} \cdot 2.3\text{H}_{2}\text{O}.
\end{align*}
\]

IR spectrum is given.

The structure has been refined from single-crystal X-ray diffraction data to \(R_I = 4.1\% \). Kentbrooksite belongs to the eudialyte group and has the framework characteristic for this group, consisting of three-membered and nine-membered rings of SiO\(_4\) tetrahedra cross-linked by Zr and M1 in octahedral coordination. Most important structural differences from e.g. eudialyte from the type locality (Ilmaussaq) are: [5]Mn substitution for [4]Fe in M2, [6]Nb (M3) substitution for [4]Si (M4), a high content of REE and F substitution for Cl. Kentbrooksite represents the \(\Sigma\text{Nb,REE,Mn,F} \) end-member of a series within the eudialyte group.

Key-words: kentbrooksite, eudialyte, new mineral species, end-member, crystal structure, Kangerdlugssuaq, East Greenland.

Introduction

During a study of the chemical variation in eudialyte, a Na-rich zirconosilicate generally with significant amounts of Ca and Fe, Johnsen & Gault (1997) discovered that among some 60 analyses a few were characterized by very high contents of Mn and rare-earth elements (REE), largely at the expense of Fe and Ca. The highest content of Mn (~8 wt% MnO) was found in a sample from Amstrup Fjord, Kangerdlugssuaq intrusion in East Greenland, while the highest content of REE hitherto reported in an eudialyte (9.78 wt% REE\(_2\)O\(_3\), Y\(_2\)O\(_3\) not included) was found in a sample from Mt. St-Hilaire, Quebec, Canada. In both samples the sum of Mn and REE pfu were distinctly higher than the sum of Ca and Fe pfu. With the purpose of exploring the crystal-chem-