Abstract: νX properties of the binary systems CO_2-CH_4 and CO_2-N_2 are described with improved accuracy and for the full ranges of composition and molar volume. PTX conditions of phase transitions including liquid, gas and solid are modelled by the Soave-Redlich-Kwong equation of state, and molar volumes by the Lee-Kesler correlation. The Soave-Redlich-Kwong equation of state has been improved for critical fluids. νX diagrams are presented, which describe phase transitions involving liquid, gas and CO_2 solid phases for CO_2-CH_4 and CO_2-N_2 fluid inclusions. Also discussed are the conditions of the metastable liquid-liquid-gas phase assemblage.

Key-words: fluid inclusions, $\text{CO}_2-\text{CH}_4-\text{N}_2$ system, phase equilibria, νX properties, equations of state.

Introduction

The determination of fluid compositions (X) and molar volumes (ν) is an essential step for any quantitative study of paleo-fluids, presently found as relics in fluid inclusions. Temperature measurements of phase transitions observed by microthermometry and combined with Raman spectrometry allow fairly accurate determinations of the νX properties of the non-aqueous volatile parts of fluid inclusions. As popularized by Bur­russ (1981), νX diagrams are most appropriate for quantitative interpretations of phase transitions in fluid inclusions. In many cases, non-aqueous volatile portions of fluid inclusions can be described in the $\text{CO}_2-\text{CH}_4-\text{N}_2$ system. Unfortunately, experimental data are not numerous enough for an accurate interpretation of phase equilibria, and molar volumes of $\text{CO}_2-\text{CH}_4-\text{N}_2$ fluids are poorly known. Thus, the accuracy of νX determinations mainly relies on the applied equations of state (EOS) and the derived phase diagrams. The large amounts of microther­mometric and Raman data, produced during the last decade, have demonstrated that available phase diagrams for the CO_2-CH_4 system (Her­skowitz & Kisch, 1984; Heyen et al., 1982) and for the CO_2-N_2 system (Darimont & Heyen, 1988) have limited ranges of application and are